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Abstract

For many consumer products, demand has an inherent visual component. Con-
sumers are concerned with, not only, the function of a product, but also the style
and look of a product. However, our ability to convert these visual characteristics
into measurables for analysis has, so far, been limited. By incorporating machine
learning techniques and recent advances in econometrics, we are able to extract useful
information from product images for use in the estimation of discrete-choice demand
models. We find that including this information results in more sensible price elasticity
estimates and improved out-of-sample prediction.
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1 Introduction

In many empirical demand models, products are modeled in characteristic space (Lancaster

1966, Berry 1994, Berry, Levinsohn, and Pakes 1995).1 In such models, a product consists

of a set of characteristics and consumers have preferences over these characteristics. In

theory, every minute detail about a product can be captured and influences the utility a

consumer derives from that product. However, in practice, accurately and concisely de-

scribing a product’s characteristics can be quite difficult. As a result, data sets record only

a subset of the universe of characteristics that compose a product. The characteristics cap-

tured in data will tend to be the characteristics that were the easiest to quantify. There are

two reasons this may be problematic. First, the characteristics that are easily quantifiable

may not be very important from the consumer’s point of view, leaving many sources of

product differentiation hidden from the standpoint of the practitioner. Second, the subset

of characteristics recorded may still be quite large, sometimes outnumbering observations.

The researcher is then required to further select among the observed characteristics for

those variables deemed most important.2

Product images represent a rich and, largely, untapped source of product characteristic

information. For many consumer products, demand has an inherent visual component.

Consumers are concerned, not only, with the function of a product, but also the style

and look of a product. For example, in art and fashion goods, the style and look of a

product are among its primary attributes. Even for other goods, the product’s image,

on packaging or on the retailer’s website, is often one of the primary sources of product

information available to the consumer. A product’s style and look can be easily conveyed

1Alternatively, demand can be modeled in product space. The constant elasticity of substitution (CES)
model, a common product space model, has been shown to have a representation in characteristic space
(Anderson, De Palma, and Thisse 1989, Hortaçsu and Joo 2018)

2Methods for model or variable selection have a long history in economics and statistics. Common
approaches include information criterion methods, such as Akaike information criterion (AIC) and Bayesian
information criterion (BIC), regularization methods, such as Lasso, and dimensionality reduction methods,
such as principle component analysis (PCA). For an overview of these tools see Ng (2013).
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to consumers through images, hearkening back to the well-known proverb “a picture is

worth a thousand words.” However, it is these combinations of characteristics that are

often difficult to quantify. Take, for example, color. Suppose the main color of a product

is blue. How would you further describe this blue? Light? Medium? Dark? How about

the spectrum of shades in between? Since these kinds of distinctions matter to consumers,

they should be quantified in the analysis.

Combining tools from machine learning and recent econometric advances by Cher-

nozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018), we show

how product images can be incorporated into standard demand estimation techniques,

such as Berry (1994). We find that product images contain information that is highly

predictive of observed demand and including this information in the estimation results in

significantly improved demand estimates. In particular, we find estimated price elasticities

that are much more reasonable when product images are included compared to estimates

using only traditional tabular data. We also find improved out-of-sample prediction when

product images are included.

Product images can be thought of as an arrangement of pixels contained in a three

dimensional matrix: height, width, and depth (color). Using the standard RBG color

model, depth has three levels representing the amount of red, blue, and green contained

in each pixel. One approach would be to simply flatten these matrices to create H×W×D

characteristic variables for each image. We could then include them as characteristics in

our demand model and use traditional regression tools to obtain parameter estimates.

However, this will perform poorly because (one-third of) an individual pixel in isolation

contains very little information leading to tens of thousands of covariates with very little

explanatory power. Additionally, the number of characteristics explodes exponentially

with the dimensions of the image, leading to sample size concerns. Instead, we use con-

volutional neural networks (ConvNets or CNNs) to reduce each image’s dimensionality

and extract features important to consumers. An interesting advantage of this technique,

2



particularly for products where demand is highly visual, is that the process of selecting

which characteristics to include can largely be taken out of the practitioner’s subjective

hands.

We demonstrate the usefulness of images in demand estimation using point-of-sale

transaction data containing the footwear sales of a major online retailer. This data first

appeared in Quan and Williams (2018). Each transaction identifies the specific product

purchased and the price paid. Each product can be matched with a set of pre-coded

characteristics, such a review ratings, color, brand, and category. Each product can also

be paired with a corresponding 102 × 136 × 3 thumbnail image of the product.3 All of the

product images are of similar quality, with each image taken from the same angle, with

the same lighting, and presented against the same background. This is important because,

as highlighted by Zhang, Lee, Singh, and Srinivasan (2017), image quality may influence

consumer demand with higher quality images resulting in higher demand, holding the

actual product constant. The consistent quality of the images in my application should

alleviate this concern.

As a first pass, we use the pre-coded characteristics and the product images, separately,

to predict a measure of sales (logit mean utilities). Comparing the predictions, we find

that using product images results in superior in-sample and out-of-sample fit, even when

a flexible machine learning model (random forest) is used with the pre-coded data. That

is, image features extracted using a ConvNet explains a larger portion of the variation

in sales relative to easily quantifiable characteristics. This suggests that product images

contain a great deal of information pertinent to consumer demand.

However, the parameters estimated by the naive application of machine learning

3The size and quality of images available online varies widely and has increased over time. Large, high
quality images are relatively inexpensive to produce. For example, a typical smartphone has a 12+ megapixel
(12 million pixels) camera. However, user download speeds constrain the practical sizes of images used
in online retail. Retailers typically employ smaller thumbnail images to appear on search pages and larger
images to appear on the main product page. In my application, we employ the smaller thumbnail images,
which have dimensions 102 × 136 = 13, 872 pixels, while the larger images that appear on this retailer’s
product pages are of dimensions 525 × 700 = 367, 500 pixels.
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should not be interpreted as measuring causal effects. Because the primary goal of ma-

chine learning is prediction, these tools face a trade-off between bias (regularization) and

variance (overfitting). Both overfitting and the regularization intended to limit it generate

bias in the estimates of our parameters of interest, such as the price coefficient. We address

this by employing double/debiased machine learning (DML) (Chernozhukov, Chetverikov,

Demirer, Duflo, Hansen, Newey, and Robins 2018). DML combines two techniques. First,

the effects of a (potentially high-dimensional) vector of characteristics are partialled out,

in the spirit of Frisch-Waugh-Lovell, using standard machine learning techniques. This

isolates the parameters of interest from the other parameters and allows for the creation of

Neyman-orthogonal moments to identify them. These moments are less sensitive to the

estimates of the other parameters. Combined with a creative use of sample splitting, they

show the bias induced by machine learning techniques can be removed from the estimates

of the parameters of interest. Additionally, the moments can be formulated to allow for

the inclusion of instrumental variables to control for endogeneity.

The inclusion of product images results in dramatically improved demand estimates.

The mean estimated product-level price elasticity is −1.3 using easily quantifiable char-

acteristics and −6.2 using the product images as characteristics. In my application, con-

sumers face very large choice sets with most products having very close competitors,

including products that are only slight variations of the same basic shoe model. Therefore,

the higher price sensitivity seems to be more reasonable. Additionally, the movement

in the price coefficient across specifications is consistent with omitted variable bias. In

the presence of omitted variable bias, estimates of the price coefficient tend to be biased

upwards, i.e. consumers are estimated to be too inelastic, because prices tend to be pos-

itively correlated with desirable omitted/unobserved characteristics. Theoretically, with

a set of strong and valid instruments, the remaining omitted variables should not affect

the estimates of the parameter of interest. However, in practice, finding such instruments

is notoriously difficult and standard instruments used in demand estimation, such as
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those used in this paper, suffer from well known flaws. More specifically, the instruments

commonly used in empirical applications may suffer from weak instrument problems

or fail to satisfy the requisite exclusion restrictions, i.e. are not valid. These issues be-

come particularly salient in my setting, where the pre-coded characteristics are likely to

omit or inadequately represent many characteristics of first-order importance to consumer

demand.

Machine learning techniques have been receiving increased attention in economics,

but its implementation has been limited. One of the main drawbacks is that because

the goal of machine learning is prediction, the estimated coefficients generally cannot be

interpreted as estimates of the causal effects. One approach to identify the causal effect

of an event, policy, or intervention is laid out in Varian (2014). First, identify an event of

interest. Then with data from a period prior to the event, train a machine learning model

and use it make out-of-sample predictions for a time period after the event. Assuming that

the only difference between the pre and post-event time periods is due to the event, the

causal effect can be measured as the difference between the machine learning prediction

and the observed outcomes. An example of this approach in the demand estimation

context can be found in Bajari, Nekipelov, Ryan, and Yang (2015). Their main focus is on

the benefits of machine learning for variable selection in data with a very large number of

possible explanatory variables, potentially greater than the number of observations, and

for making out-of-sample predictions. They use the out-of-sample predictions to estimate

the causal impact of promotion on sales. However, whereas their parameter estimates

do not have a causal interpretation, we are able identify structural parameters of interest,

namely the price coefficient.

The DML approach derives from a series of papers demonstrating the usefulness of us-

ing Lasso for variable selection and partialling out high-dimensional nuisance parameters

(Belloni, Chen, Chernozhukov, and Hansen 2012, Belloni, Chernozhukov, et al. 2013, Bel-

loni, Chernozhukov, and Hansen 2014). Sample splitting has also allowed for progress in
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the identification of causal effects using tree methods. For example, Athey and Imbens

(2016) and Wager and Athey (2017) develop methods to identify heterogeneous causal

treatment effects in experimental or observational data using regression trees and random

forest algorithms, respectively.

Additionally, most of the literature has focused on the use variables that have already

been quantified, but there are a couple of notable exceptions. Gentzkow, Kelly, and Taddy

(2017) provide an overview of techniques to extract meaningful information from text.

Zhang, Lee, Singh, and Srinivasan (2017), use image processing techniques to first classify

images by measures of image quality. They then use these classifications to examine how

image quality effects consumer demand. They find that better quality images result in

higher demand, holding the actual product constant. My work differs in two respects.

First, we allow the algorithm to determine the features that are useful for the prediction of

demand, rather than classifying images according to a particular set of known attributes.

Second, the features we extract are meant to capture actual product differentiation, rather

than differences in the image’s ability to convey that information to consumers.

The rest of the paper is organized as follows. Section 2 introduces the data. Section

3 outlines the demand model. Section 4 describes the DML procedure and the machine

learning tools used to extract characteristics from images. Section 5 presents the estimation

results and compares the results for specifications with and without product images and

section 6 concludes the paper.

2 Data Overview

The data in this study comes from Quan and Williams (2018). It consists of transaction

level observations of the shoe sales from a major online retailer. Each transaction consists

of a timestamp, a 5-digit shipping zip code, price paid, a model ID (SKU), and a style ID

(color). A product is defined at the model-style level. In this study, we will focus on sales

of men’s shoes from August 2012 to July 2013 aggregated to the national-month level.
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Summary statistics can be found in Table 1. This subset of the data accounts for almost

$300 million in revenue and consists of over 3.3 million pairs of shoes sold. These sales

are across more than 12.5 thousand SKUs and 31 thousand total varieties (SKU-styles).4

Style variants per SKU average two, but have a wide range, between 1 and 55.

Table 1: Summary Statistics (Pre-Coded)

Mean SD Min Max

Price 108.491 77.520 10.49 1,650
Comfort 4.436 0.617 1 5
Look 4.701 0.403 1 5
Overall 4.417 0.629 1 5
No Review 0.370 0.483 0 1

Total (Annual)
- SKUs Stocked 12,519
- SKU-Styles Stocked 31,775
- Quantity Sold (1000’s) 3,364.958
- Revenue ($ mil) 293.546

Monthly
- SKUs Stocked 7,036.583 515.701 5,722 7,485
- SKU-Styles Stocked 14,547.417 847.305 12,708 15,445
- Styles per SKU 2.067 1.710 1 55
- Quantity Sold (1000’s) 280.413 31.047 238.175 355.536
- Revenue ($ mil) 24.462 2.778 21.392 31.629

Monthly sales average around $25 million in revenue and 280 thousand pairs of shoes

sold. As is usual in retail, sales are cyclical with quantity and revenue peaking in December,

during the holiday season, and reaching its low in February. The data also suggest a great

deal of turnover in products. Of the 31 thousand varieties observed over the course of

the 12 month sample, an average of only 14.5 thousand products are in stock at any given

point in time. Interestingly, the number of unique varieties in-stock does not follow the

cyclical pattern of sales. Instead it is growing steadily over time. This is consistent with

4Among all shoes, men’s shoes account for about one third of revenue, quantity sold, and varieties for this
online retailer.
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the trend of increasing variety in consumer goods, particularly among online retailers.

Each product has a number of pre-coded characteristics. These include sale prices,

primary color, category,5 brand, and review data on look, comfort, and overall appeal.

The average listed price is $108, but there is a great deal of variation in prices which range

from $10.49 to $1, 650. Weighted by sales, the average price is $87.23. Review ratings range

from 1 (low) to 5 (high) and average 4.4, 4.7, and 4.4 for comfort, look, and overall appeal,

respectively. However, these ratings are heavily skewed toward favorable ratings with

the 15th percentile being 4 or above in all three categories. Roughly, 37% of observations

contain no review data. Observations with no reviews tend to occur for newer products

and products with fewer style variants.

︸                                                                                        ︷︷                                                                                        ︸
=

Figure 1: RBG Structure

Additionally, for each product stocked by the online retailer, a thumbnail image of

the product was collected. Each image has a height of 102 pixels, a width of 136 pixels,

and is color coded using the RBG model for a depth of 3. The RBG color model indicates

the levels of red, blue, and green contained in each pixel. Figure 1 illustrates the RGB

structure of the images. Each color is given an integer representing the level of that color’s

saturation between a low of 0 and a high of 255. For example, a black pixel is coded as
5Men’s shoe categories include boat, boot, climbing, loafers, oxfords, sandals, slippers, and sneakers.
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(0,0,0) to indicate the absence of color, while a white pixel is coded as (255,255,255) to

indicate complete saturation. Thus, each image can be converted into a three dimensional

matrix containing integers between 0-255 with dimensions 102 × 136 × 3.

Figure 2: Examples of collected images

As shown in Figure 2, products in these images are displayed against a solid white

background and are taken at similar angles with similar lighting. This is convenient for two

reasons. First, this should make training the machine learning algorithm easier because the

images are not distorted and the algorithm will not have to differentiate between the object

of interest and other background noise. Second, as highlighted by Zhang, Lee, Singh, and

Srinivasan (2017), image quality can influence how consumers perceive products. Since

our online retailer presents consumers with similar high quality images for all products

available on their website, this channel should not effect the analysis in my setting.

3 Consumer Demand

To highlight the impact of images on demand estimation and to ease the exposition of the

DML procedure, we focus on the relatively simple and well known discrete choice logit
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framework.6 A consumer i at time t chooses among Jt +1 alternatives, where j ∈ {1, 2, ..., Jt}

is the set of available products at time t and the outside good is indexed as j = 0. Consumer

i at time t chooses product j if and only if the utility derived from product j is greater than

the utility derived from any other product, ui jt ≥ ui j′t,∀ j′ ∈ Jt ∪ {0}. For ease of notation,

we suppress the t subscript in the remaining discussion of the model. Product j provides

consumer i with utility equal to

ui j = δ j + εi j,

where δ j is the mean utility of product j and εi j is drawn i.i.d. from a Type-1 extreme

value distribution. The mean utility of product j is allowed to be partially linear in

characteristics, which can be written as

δ j = g(x j) + αp j + ξ j,

where x j is a, potentially high-dimensional, vector of product j’s characteristics, p j is

product j’s price, and ξ j is the unobserved product quality of product j, which includes

characteristics of product j that are unobservable to the econometrician.

Integrating over individuals’ Type-1 extreme value error terms obtains the standard

logit market share equation, which have following analytic form:

s j =
exp{δ j}

1 +
∑

j′∈J exp{δ j′}
.

The market shares are a function of mean utilities, δ j, where the outside good has utility

normalized to zero, i.e. δ0 = 0. Market shares can then be inverted, as shown in Berry

(1994), to yield a (partially) linear equation to estimate:

δ j = log(s j) − log(s0) = g(x j) + αp j + ξ j.

6It is relatively straightforward to extend the use of images to the nested logit framework and we discuss
potential further extensions in the conclusion.
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While ξ j is unobserved by the econometrician, it is assumed that some or all of the

characteristics in ξ j are observed by consumers when they are making their purchasing

decisions. Since market mechanisms will cause the price to be higher for products that

have more desirable characteristics, the omitted characteristics are likely to create positive

correlation between the price and the unobserved product quality. If left unaccounted for,

this will result in upward bias in the estimated price coefficient. That is, consumers will

be estimated to be too price insensitive. The Berry (1994) market share inversion allows

for the use of linear instrumental variables techniques to be applied to control for this

endogeneity.

In general, the primary parameter of interest to researchers is the coefficient on price,

α, because it determines price elasticities and consumer welfare measures in the logit

demand model.7 On the other hand, parameters of the function g(·) are often considered

“nuisance” parameters. While the marginal effects of some covariates may be of interest,

this is often secondary as their precise values have no effect on price elasticities or measures

of consumer welfare. However, including x j in the estimation is still beneficial to avoid

potential biases created by omitting them.8

In practice, the function g(·) is usually assumed to be a linear function of characteristics,

x j. However, in my application, the product characteristics are images. Since individual

pixels have little meaning in isolation and are unlikely to have meaningful linear effects,

it will be important to allow for flexible nonlinearities. For comparative purposes, we

will use flexible machine learning estimators on both the pre-code data and the images.

However, while techniques from machine learning allow for flexible estimation of the

7In a nested logit framework, the primary parameters of interest are α and the nesting parameter, λ. In a
random coefficients framework, they are α and the random coefficients, σ.

8This has also motivated the inclusion of covariates and proxies that are correlated with demand, but
may be difficult to interpret as structural parameters of the utility function. For example, some measure of
advertising or promotion will often appear in empirical specifications, but we may not want to interpret this
as advertising and promotion affecting the utility the consumer derives from consumption of the product.
Similarly, in my application, we include review ratings as proxies for quality. However, we should not
interpret this as a structural relationship where a consumer’s utility is directly impacted by the experiences
of other consumers.
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function g(·), they introduce regularization bias into the estimate of the parameter of

interest. To address this, we employ recent advances by Chernozhukov, Chetverikov,

Demirer, Duflo, Hansen, Newey, and Robins (2018) to obtain a consistent estimate of α.

We detail these techniques in the following section.

4 Estimation

In this section, we discuss the estimation of a discrete choice demand model using DML. We

begin by discussing the DML technique of Chernozhukov, Chetverikov, Demirer, Duflo,

Hansen, Newey, and Robins (2018) in a partially linear setting with instrumental variables

(IV) and illustrate that the discrete choice framework naturally fits within their more

general setting (Section 4.1). This allows for consistent estimation of the price coefficient

in the presence of a high dimensional nuisance parameter and price endogeneity. We then

discuss the particulars of estimating the nuisance parameters using ConvNets for image

data (Section 4.2) and random forest for traditional pre-coded tabular data (Section 4.3).

4.1 Double/Debiased Machine Learning

Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018) derive

results for obtaining root-N consistent estimates and making valid inference about a low-

dimensional parameter of interest, α, in the presence of a high-dimensional nuisance

parameter, g(·). To remove the regularization bias induced by machine learning techniques

and obtain point estimates of α that are approximately unbiased and normally distributed,

they combine two techniques in a process they call double or debiased machine learning

(DML). First, the effects of the high-dimensional vector of characteristics (x) are partialled

out, in the spirit of Frisch-Waugh-Lovell,9 using standard machine learning techniques.

9The Frisch-Waugh-Lovell Theorem (Frisch and Waugh 1933, Lovell 1963) states that a subset of parameters
in a multivariate regression can be obtained by first partialling out the effects of the other "nuisance" variables,
then regressing the orthogonalized dependant variable on the orthogonalized variables of interest. This is
implemented by first projecting the nuisance variables (X2) onto the dependent variable (Y) and the variables
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This allows for the construction of Neyman-orthogonal moments. These moments are

less sensitive to the estimates of the nuisance parameter. Combined with creative use

of a sample splitting, called cross-fitting, they show the regularization bias induced by

machine learning techniques can be removed from the estimate of α.

After inverting market shares, the consumer demand model in Section 3 can be framed

as a partially linear regression model. To illustrate key ideas, we first present the model

where price is exogenous conditional on adequately controlling for x j,

δ j = g(x j) + αp j + ξ j, E[ξ|x, p] = 0

p j = m(x j) + v j, E[v|x] = 0. (4.1)

Since the price endogeneity in discrete-choice demand models is driven by omitted vari-

able bias, this simplified model assumes that all relevant characteristics are observed by

the econometrician. Anything remaining in ξ j is uncorrelated with price. This would

hold, for example, if the elements in ξ j are unobserved by firms when prices are set. The

standard moment condition identifying α is

E[(δ − g(x) − αp)p] = 0.

Let us start by randomly splitting the data of size N in half. Designate one of these

halves the main set, J̃, and the other the auxiliary set, J̃c. The naive machine learning

approach would be to construct a machine learning estimator α̂p j + ĝ(x j). Suppose an

estimate of g(·), ĝ(·), is obtained from the auxiliary set. Using the main set and replacing

of interest (X1). Denote the projection matrix MX2 = X2(X′2X2)−1X′2. The parameters of interest can then
be obtained by regressing the orthogonalized dependent variable MX2 Y on the orthogonalized variables of
interest MX2 X1. Giles (1984) shows that it is straightforward to extend the Frisch-Waugh-Lovell Theorem to
IV settings.
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g(·) with ĝ(·), the naive estimator of α would be

α̂ =

1n∑
j∈J̃

p2
j


−1

1
n

∑
j∈ J̃

p j(δ j − ĝ(x j)).

However, Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018)

show that the estimator α̂ does not converge in probability to the true value of α, i.e.

|
√

n(α̂ − α)|
p
→∞. To see this decompose the scaled estimation error as

√
n(α̂ − α) =

1n∑
j∈ J̃

p2
j


−1

1
√

n

∑
j∈J̃

p jξ j +

1n∑
j∈ J̃

p2
j


−1

1
√

n

∑
j∈J̃

p j(g(x j) − ĝ(x j)).

The first term is well behaved in that it is approximately normally distributed and centered

around zero, which follows from the central limit theorem. However, the second term is

the regularization bias term, which is not centered and typically diverges. This is because

the regularization in machine learning estimators induces biases in the estimate ĝ(·). For

example, a Lasso estimator introduces a penalty for nonzero parameters.10 This biases

parameter estimates in ĝ(·) toward zero and the naive estimator of α is sensitive to these

biases. In some instances, parameters with true values that are small will be set to exactly

zero and, in this sense, regularization reintroduces omitted variable bias.

To remove the regularization bias, DML first partials out the effects of the high-

dimensional vector of characteristics, x, from both δ and p, which can be viewed as

performing a version of Frisch-Waugh-Lovell. The orthogonal quantities can then be

10Lasso is a penalized regression that minimized the following objective:

1
N

N∑
i=1

yi −

K∑
k=1

xikβk


2

+ λ
K∑

k=1

|βk|.

The first term is the usual mean squared error and the second term is the penalty term. The penalty is
determined by a tuning parameter λ that controls the strength of the `1 regularization or the amount of
"shrinkage." When λ = 0, Lasso is equivalent to standard linear regression. When λ = ∞, all parameters are
set to 0.
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used to construct Neyman-orthogonal moments and an orthogonalized formulation of

the estimator. The Neyman-orthogonal moment identifying α is

E[(δ − E[δ|x] − α(p − E[p|x]))(p − E[p|x])] = 0.

Denote the unknown nuisance functions, m(x) ≡ E[p|x] and `(x) ≡ E[δ|x]. We can use

the auxiliary set to obtain estimates of the nuisance parameters η̂ = (m̂, ˆ̀) using machine

learning. Denote the residuals V̂ j = p j − m̂(x j) and Ŵ j = δ j − ˆ̀(x j). The empirical moment

then uses the main set of observations and the estimators from the auxiliary sample, η̂, in

place of the unknown nuisance functions. The DML estimator of α is then

α̌ =

1n∑
j∈J̃

V̂2
j


−1

1
n

∑
j∈ J̃

V̂ jŴ j.

This estimator is shown to be
√

n consistent and approximately centered normal. To see

this decompose the scaled estimation error as

√
n(α̌−α) =

1n∑
j∈ J̃

V2
j


−1

1
√

n

∑
j∈ J̃

V jξ j+

1n∑
j∈ J̃

V2
j


−1

1
√

n

∑
j∈ J̃

(m(x j)−m̂(x j))(`(x j)− ˆ̀(x j))+op(1).

As before, the first term is approximately normally distributed and centered around zero.

The second term is now the product of two estimation errors, which is shown to vanish

under a broad range of data generating processes. Finally, the final term, op(1), is ensured

by sample splitting. The remainder term contains terms like

1n∑
j∈ J̃

V2
j


−1

1
√

n

∑
j∈J̃

ξ j(m(x j) − m̂(x j)).

Without sample splitting m̂ may depend on ξ j, which would require additional strong
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assumptions to ensure op(1) (Belloni, Chernozhukov, Fernandez-Val, and Hansen 2017).

However, with sample splitting, m̂ is estimated independently of the ξ j in the main set of

data and this term vanishes at the appropriate rate.

Notice that convergence above is at rate root-n, which is N/2. Splitting the sample has

led to a substantial loss in efficiency because only a subset of the data was used to estimate

the parameter of interest. However, by reversing the roles of the main and auxiliary sets,

referred to as cross-fitting, a second estimator of the parameter of interest can be obtained.

Since the two estimators are approximately independent, averaging over them regains full

root-N efficiency.

Let us now loosen the conditional exogeneity assumption by allowing p to be cor-

related with ξ, even after conditioning on x. Suppose we have an instrument z j that is

correlated with price, but uncorrelated with the unobserved quality, ξ j. The partially

linear instrumental variables (IV) specification is

δ j = g(x j) + αp j + ξ j, E[ξ|x, z] = 0

z j = m(x j) + v j, E[v|x] = 0. (4.2)

The DML procedure now partials out the effects of x from δ, p, and z. This leads to

Neyman-orthogonal moment

E[(δ − `(x) − α(p − r(x)))(z −m(x))] = 0,

where `(x) ≡ E[δ|x], r(x) ≡ E[p|x], and m(x) ≡ E[z|x]. This orthogonalized specification

leads to consistent estimates ofαusing intuition similar to the above conditional exogeneity

case. Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018)

also prove that, under certain regularity conditions, estimators α̌ constructed using this

moment obeys σ−1
√

N(α̌ − α)  N(0, 1), where σ2 = E[pv]−1E[v2ξ2]E[pv]−1, allowing for

inference.
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DML Estimation Procedure

In practice, estimation using DML is quite straightforward and proceeds in the following

steps

1. With the auxiliary set, J̃c, use machine learning techniques to fit δ, p, and z on x. This

creates the estimators ˆ̀(x), r̂(x), and m̂(x), respectively;

2. With the main set, J̃, calculate the orthogonalized quantities

δ̌ j = δ j − ˆ̀(x)

p̌ j = p j − r̂(x)

ž j = z j − m̂(x);

3. Using linear IV techniques, such as two-stage least squares (2SLS), regress δ̌ on p̌

using ž as instruments to obtain and estimate of α, denoted α̂1;

4. Reverse the roles of the main and auxiliary sets. Repeat steps (1)-(3) to obtain a

second estimate of α, denoted α̂2;

5. Take the average of the two estimates to obtain the final estimate,

α̂ =
1
2

(α̂1 + α̂2) .

4.2 ConvNet: Estimating nuisance parameters from product images

We now discuss the details behind estimating the nuisance parameters ˆ̀(x), r̂(x), and m̂(x)

with images in my application. Each of the images in my data have the same dimensions

(102 × 136 × 3). Technically, one could flatten the three dimensional matrix representing

each image to create a vector of 41, 616 covariates and include all of them as part of the

vector of product characteristics, x j. This would allow for the use of standard estimation
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techniques, such as OLS or 2SLS. However, obtaining a large enough sample size to include

such a large number of covariates may be impractical in many circumstances and this

challenge increases exponentially with the size of the image. Perhaps more importantly,

an individual pixel contains very little information in isolation. This is because a pixel

covers only a minuscule speck of the entire image. As a result, visible features that may be

of interest to the consumer, such as brand logos, will require a combination of hundreds or

thousands of pixels in a very particular arrangement. Thus, attempting to estimate linear

marginal effects of individual pixels is unlikely to yield sensible results.

Instead, to perform dimensionality reduction and to extract features that are predic-

tive of demand, we use a technique from machine learning called convolutional neural

networks (ConvNet). ConvNets take images as inputs and output a prediction for some

observable outcome chosen by the researcher. Weights/parameters within the ConvNet

are chosen to minimize the prediction error for a training data set where outcomes are

known.11 The fitted model can then be used to make out-of-sample predictions. Using

product images from the auxilary set, J̃c, we train three models, predicting the outcomes

δ, p, and z. This yields estimates ˆ̀(x), r̂(x), and m̂(x) of the functions `(x), r(x), and m(x),

respectively.

Before getting into the specifics of ConvNets, let me first introduce more simple neural

networks. Suppose we would like to predict an outcome y j using a vector input x j of

dimension 1 × K. In standard regression analysis, x j would be described as a set of

regressors and y j would be called the dependent variable for an observation j in the

data set. A simple one-layer neural network would predict y by estimating a set of

weights (or neurons) β̂, i.e. ŷ = β̂x′, where β̂ has dimension 1 × K for a continuous

y.12 In machine learning, this type of layer is referred to as a fully connected layer, i.e.

each observation is connected to each neuron. The weights, β̂, are chosen to minimize an

11We present a very simplified overview here. Interested readers can find a more comprehensive overview
in the course notes for Stanford CS course CS231n: Convolutional Neural Networks for Visual Recognition
(http://cs231n.stanford.edu/).

12If y is discrete, β̂ has dimension [# classifications] × K.
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objective function, such as the mean square error, and this simple setup should give similar

results to OLS. However, neural networks would generally include additional layers and

an activation function for each layer. For example, consider a two-layer neural network,

ŷ = β̂2 max{0, β̂1x′}, where max{·} is an activation function that is applied element-wise

and β̂2 is an additional layer of weights. Activation functions are so named because they

determine when a "neuron" is "on" (activated) or "off" and is used in machine learning as a

simple way to introduce nonlinearities. The max{·} activation function is called a Rectified

Linear Unit (ReLU). An example plot of a ReLU is presented in Table 3. All positive

Figure 3: Illustration of a ReLU Activation Function

values of β̂x′ remain unchanged, but any negative values are set to zero. While there are

other activation functions, ReLUs have become the most commonly used and will be the

activation function applied in this paper.

ConvNets are neural networks that take images as inputs and make use of layers

that are more adapted to the structure of images (height, width, depth). ConvNets have

four main types of layers: convolutional layers, pooling layers, activation layers, and

fully connected layers. The last two types of layers are as above. The activation layers

determines when a neuron should be activated and fully connected layers take vectors as

inputs and outputs. A convolutional layer can be thought of a set of filters or kernels that

are moved over the image. Each filter is assigned a height and width, called a kernel size,

and has the same depth as the input. Each weight in the filter is multiplied element-by-
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element with the input and then summed to produce a number. As it moves over each

section of the image, the convolutional layer creates a two dimensional matrix output and

the output of different filters are stacked to create the depth of the output. An extremely

(a) First operation

(b) Second operation

Figure 4: Illustration of Convolutional Layer Operation

simplified example of the operations performed in a convolutional layer is illustrated in

Figure 4. On the left, is a 4 × 4 matrix. Suppose this represents an image and that we

are applying a 2 × 2 filter to it. Begin with the 2 × 2 section in the top left corner of the

image (sub-figure (a)). Perform an element-by-element multiplication with the filter then

sum over these numbers to produce the first element of the output matrix.13 Next, move

the window to the right by one pixel and repeat, this produces the second element of the

output matrix (sub-figure (b)).14 Continue repeating these operations moving from left to

right. At the end of the row, move the window down one pixel and repeat, again from left

to right. This continues until the entire image has been covered by the filter.

The pooling layer is a dimensionality reduction tool that takes the maximum over a
131 ∗ 2 + 2 ∗ 1 + 5 ∗ 1 − 6 ∗ 2 = −3
142 ∗ 2 + 2 ∗ 1 + 6 ∗ 1 − 7 ∗ 2 = −1
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region along the height and width dimensions. A simplified example of a 2 × 2 max pool

operation is illustrated in Figure 5. The max pool operation takes the maximum over

Figure 5: Illustration of a Max Pool Operation

elements in its window reducing the dimensionality from 2 × 2 to 1 × 1. For example, in

Figure 5, the first 2× 2 window is highlighted in blue. The maximum over this window is

6 and this becomes the first element of the output matrix. A simple 2×2 max pool cuts the

size of both the height and the width dimensions in half, but leaves the depth unchanged.

The structure of ConvNets can be become very complex. "Deep" ConvNets can include

hundreds or thousands of layers varying between types and sizes. For illustrative pur-

poses, we employ a very simple ConvNet here. We begin with one convolutional layer of

dimension 3×3×32, followed by a 2×2 max pool layer. The output of the max pool layer is

then flattened to create a vector, which is then passed through two fully connected layers of

dimension 1× 32, and a final 1× 1 layer that outputs the prediction. Despite this relatively

simple structure, the model contains over 3.4 million parameters to “estimate,” which are

regularized using an `1 penalty of 0.01. The ConvNet models are trained in Python using

the Keras15 package and TensorFlow16 backend. In the next section, we show that the

ConvNet model fits well and leads to much more sensible demand estimates compared to

standard methods.
15https://keras.io/
16https://www.tensorflow.org/
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4.3 Random Forest: Flexibly estimating nuisance parameters from pre-coded

data

To flexibly estimate the nuisance parameters ˆ̀(x), r̂(x), and m̂(x) with pre-coded data

we use a non-parametric tree-based method called random forest. A basic regression

tree can be thought of as a hierarchical series of nested if-else conditions or as recursive

binary splitting. At each node, a characteristic is selected and a decision rule splits that

characteristic. That is, for a characteristic k and split point s, the parameter space is

partitioned into two regions

R1(k, s) = {X|Xk ≤ s} and R2( j, s) = {X|Xk > s}.

The characteristic k and split point s are chosen to minimize

min
ŷR1

∑
i:xi∈R1(k,s)

(yi − ŷR1)2 + min
ŷR2

∑
i:xi∈R2(k,s)

(yi − ŷR2)2.

Each of these branches are then partitioned again in the same way and the process is

continually repeated. A terminal node is called a leaf. In the limit, each observation of x

would be assigned its own leaf and its own prediction of y. This, of course, would have

perfect in-sample fit, but the out-of-sample fit would reveal severe overfitting. As a result,

in practice, trees are expanded until a certain stopping criteria is met. Common examples

include a specific number of splits, a minimum number of observations per leaf, or until

the reduction in the objective falls below a certain threshold.

Random forest is an ensemble method that fits multiple regression trees, then averages

over their predictions. Randomness is induced across trees by allowing only a random

subset of characteristics to be considered at each node. The randomness and averaging

across models has been shown to control overfitting and increase prediction accuracy. The
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random forest estimator is trained in Python using the scikit-learn17 package.

5 Results

5.1 Feature Extraction

To illustrate that product images contain information that is useful for predicting consumer

demand, we estimate the conditional expectation of the mean utilities given observable

characteristics,

δ j = ̂E[δ j|x j] + u j

= ˆ̀(x j) + u j

That is, we fit the mean utilities, δ, using observable characteristics, excluding price. We

then calculate the mean squared error of the associated predictions. Three specifications

are considered. The first specification is a standard linear model estimated by ordinary

least squares (OLS) using the pre-coded characteristics. The second specification also uses

the pre-coded characteristics, but is fit with a random forest estimator, which captures

potential nonlinearities and interactions between covariates. The final specification uses

product images as characteristics and is fit using a ConvNet with the structure described

in the Section 4.2.

Sales are aggregated to the national level and time horizons are defined to be at the

monthly level. Included in the pre-coded characteristics are product ratings for comfort,

look, and overall appeal and fixed effects for color and brand. The product ratings are

time varying and reflect the scores consumers would observe at the time of purchase. To

examine the out-of-sample fit of each specification, we split the sample into a training set

and a test set and withhold the test set when fitting the model. The training set contains

17https://scikit-learn.org/
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the observations from August 2012 to May 2013. The test set contains the observations

from June and July 2013, which is 29,843 of 174,569 observations or roughly 17.1% of the

sample.

Results from the fitting exercises are presented in Table 2. As a baseline, the first

column contains a model fit with a constant only. Comparing the other specifications to

the constant only model, it is clear that both sets of data contain information predictive of

demand. In the specifications using pre-coded characteristics, the random forest estimator

fits the data substantially better than OLS, suggesting important nonlinearities or inter-

actions among the observed pre-coded characteristics. Comparing random forest to the

ConvNet, we see that while the random forest specification has slightly better in-sample

fit, the ConvNet performs better out-of-sample. The out-of-sample fit will be important

because of DML’s reliance on sample splitting.

Table 2: Summary of ConvNet Fit (MSE)

Pre-Coded (Tabular) Images
Constant OLS Random Forest ConvNet

Training Set (In-Sample) 1.643 1.207 0.568 0.578

Test Set (Out-of-Sample) 1.622 1.222 1.031 0.944

Across all specifications, we observe that the in-sample fit is better than the out-of-

sample fit. While this is unsurprising, it suggests a degree of overfitting, which is par-

ticularly apparent for the machine learning estimators. However, both machine learning

estimators produce superior out-of-sample performance compared to the standard linear

specification. In order to use these machine learning techniques for demand estimation,

we will need to address both overfitting and the regularization bias these techniques in-

duce to reduce overfitting. DML allows us to address these concerns by first estimating

the nuisance parameters on an auxiliary set of data. The estimated nuisance parame-

ters from the auxiliary set are then used to predict values for the main set and construct
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the Neyman-orthogonal moments. Concern over overfitting is eliminated because the

in-sample (auxiliary set) predictions are not used directly in the estimation of the pa-

rameters of interest, while the Neyman-orthogonal moments removes the influence of

regularization bias on the estimates of the parameters of interest.

5.2 Logit Demand

We now discuss the main demand estimates. Price is instrumented for using typical

BLP-style instruments. Included are the number of available styles for a particular shoe

model and the number of within-category own and competitor products available for

sale. The standard linear specification is estimated by 2SLS using the above instruments

to instrument for price endogeneity. The partially linear IV specification (Equation 4.2) is

estimated using DML to obtain consistent estimates of the price coefficient, α. We estimate

the nuisance parameters in two ways. First, with the pre-coded characteristics we use a

random forest estimator. Second, with the product images as characteristics we estimate

a ConvNet model. To implement DML, the training set is split into an auxiliary set and a

main set. Each split contains half of the unique SKUs in the training set. As discussed in

Section 4.1, estimates of the nuisance parameters are obtained from the auxiliary set. The

resulting estimators are then used to partial out the nuisance parameters in the main set,

orthogonalizing the remaining variables. Finally, a point estimate of α, α̂1, is obtained by

2SLS using the orthogonalized quantities. The role of the auxiliary and main sets are then

reversed to obtain a second estimate, α̂2, and the two estimates are averaged to obtain the

final estimate, α̂.

Demand results are summarized in Table 3. The top panel presents estimates for the

parameter of interest α. All of the estimated price coefficients have the correct sign and are

highly statistically significant. The two sets of estimates using pre-coded characteristics,

2SLS and random forest, very similar, whereas using product images as characteristics

results an estimate of α that is much larger in magnitude. That is, consumers are estimated
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to be much more price sensitive in the specification using product images.

Table 3: Demand Estimates

Pre-Coded (Tabular) Images
2SLS Random Forest ConvNet

Price Coefficient (α) -0.012*** -0.013*** -0.057***
(4e−4) (0.001) (0.004)

Price Elasticity
Mean -1.317 -1.367 -6.153
Standard Deviation 0.941 0.977 4.396

Price elasticities implied by the logit model can be calculated as

ε j =
p j

s j

∂s j

∂p j
= α · p j · (1 − s j).

Using this equation, a product level elasticity is calculated for each product, in each of

the specifications. The bottom panel of Table 3 presents the mean and standard deviation

of the estimated product-level price elasticities. The average product-level price elasticity

implied by the estimates using product images is roughly four times greater in magnitude

than the estimates from the pre-coded characteristics, −6.2 vs. −1.3. The estimates stem-

ming from the model using product images seems to be more much more reasonable than

the estimates using pre-coded characteristics. In particular, the specification using the

pre-coded characteristics imply consumers are much too price insensitive. Consumers in

this market face very large choice sets with most products having very close competitors,

including variants of the same model in a different style/color. This is further illustrated in

the distribution of elasticities implied by the two sets of data. Figure 6 plots a historgram

of implied elasticities from the pre-coded (random forest)18 and image data estimates. A

vertical black line is drawn at ε = −1. As we can see, using the results from pre-coded data,

18Elasticities computed using the 2SLS estimates are slightly more inelastic, but are otherwise identical in
shape.
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a large fraction of products, over 40%, are estimated to have inelastic demand. Compared

to the results using image data, which implies less than 0.07% of products have inelastic

demand.

Figure 6: Histogram of Elasticities

Note that the same set of instruments are used with both sets of data. Theoretically,

with a set of strong and valid instruments, the instruments should be identifying the

parameter of interest and the remaining unobserved/omitted variables should not impact

the resulting estimate. However, in practice, finding such instruments is notoriously

difficult. The ideal set of instruments, information on firm-level cost shifters, is rarely

available. As a result, empirical applications have settled for instruments that rely on

fairly strong assumptions. Two commonly used instruments, BLP (used in this paper) and

Hausman instruments, suffer from well known issues that are particularly salient in my

application.
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BLP-style instruments are constructed by taking the sum of characteristics across com-

peting products (Berry, Levinsohn, and Pakes 1995). These instruments are intended to

capture the density of products, i.e. the fierceness of competition, where this product is

located in characteristic space. Competition affects the markups firms can charge, which

implies the instrument will be correlated with price. But since the utility derived from

a product is not influenced by the characteristics of other products, the instrument will

be uncorrelated the unobserved quality, hence valid. However, when primary product

attributes are not adequately captured in the data, competition in the observed characteris-

tics will have only a weak relationship with price, leading to a weak instruments problem.

Further, this may be exacerbated in settings with large choice sets, as the dependence of

markups on the characteristics of other products decreases with the size of the choice set.

Thus, BLP instruments may lose identifying power in settings with a large number of

products, such as mine (Armstrong 2016).

Hausman instruments take the average prices of the same product in other markets as

an instrument for price in the target market (Hausman 1996).19 Prices will be correlated

across markets through the costs of the firm. The validity argument then assumes that the

remaining differences in the product’s price across markets is driven local demand shocks

that are independent across markets. This assumption is easily violated by, for example,

national or regional advertising campaigns. Additionally, if important product attributes

are omitted from the demand specification, the value of these omitted characteristics will

be captured in the price of the product in all markets, leading to correlated demand shocks

and invalidity of the instruments.

Because price tends to be positively correlated with the unobserved quality, we would

expect omitted variable bias and weak instruments to lead to upward bias in the estimated

price coefficient. Thus, the movement in the estimated price coefficient across specifica-

tions suggests the model using product images may be addressing omitted variable bias

19Hausman instruments cannot be used here because the online retailer charges uniform prices. In general,
online retailers hesitate to (3rd degree) price discriminate for fear of public backlash.
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by capturing additional characteristics not included in the pre-coded data.

6 Conclusion

Product images represent a rich and, largely, untapped source of product characteristic

information. These images can quickly convey a tremendous amount of information to

consumers and, in retail markets, are one of the primary sources of information available to

consumers. However, our ability to convert these visual characteristics into measurables

for analysis has been limited.

In this paper, we illustrated how product images can be included in structural demand

estimation. Using tools from machine learning, features that are predictive of observed

demand were extracted from product images. Combining this with recent advances in

econometrics allow for the consistent estimation of a small set of demand parameters,

in particular, the price coefficient, which allows for the consistent estimation of price

elasticities.

Compared to traditional pre-coded tabular data, we find that including product image

data results in more reasonable estimates of price elasticities and improved out-of-sample

fit. Given the logit functional form assumption, estimates derived from a set of strong

and valid instruments should result in similar estimates of the structural price coefficient.

However, such instruments are notoriously difficult to find and standard instruments

used in demand estimation suffer from well known issues. Because the same set of

instruments is used in the estimation of both the pre-coded and image specifications, it is

likely that including the image data addresses a problem with omitted variables present

in the pre-coded data.

To simplify the exposition and highlight the power of using images as data in demand

estimation, we perform the analysis in the context of a logit discrete-choice model. This

places strong assumptions on the substitution patterns of consumer, such the well known

independence of irrelevant alternatives (IIA) assumption. This can be loosened slightly by
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assuming a nested logit framework and it is straightforward to apply the DML procedure

to the inverted nested logit market shares found in Berry (1994). This model would have

two parameters of interest, the price coefficient and the nesting parameter, and one would

simply need to orthogonalize the additional endogenous variable, the log of market shares

conditional on nest, and include it in the IV regression.

However, extending DML to the random coefficients framework of Berry, Levinsohn,

and Pakes (1995) may be more difficult. One of the main benefits of machine learning,

the ability to flexibly approximate arbitrary functions, may actually make it difficult to

separately identify random coefficient parameters on image features. This is because, as

shown by Salanié and Wolak (2019), the random coefficients can be approximated in a

linear estimator by including quadratic combinations of the regressors. If the machine

learning estimator captures these quadratic relationships, it will soak up the variation

in the data that identifies the random coefficients. Additionally for image data, while

ConvNets can be described as feature extraction, it produces a prediction of the intended

target rather than a set of traditional characteristics. One could pull out an intermediate

layer and treat these as characteristics in another estimator, but it is unclear what the

interpretation of these "characteristics" would be. In particular, it is unlikely that one

vector would correspond with color and another to category. Instead each vector would

be some indeterminate nonlinear function of all features in the image.

We leave it to future research to determine if a random coefficients model can be

estimated while including image data. One possible solution may be to combine the two

types of data. In the "outer loop," estimate key random coefficients from the pre-coded

characteristics. Then in the "inner loop," use the combined pre-coded and image data

to fit the mean utilities. However, one would have to address the stochastic nature of

machine learning estimators to ensure convergence. Additionally, if it converges, it will

likely to take a significant time investment because the machine learning models need to

be re-estimated for each iteration of the loop.
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